using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace DeepLeo.Library.String { public class LevenshteinSimilarity { public class LevenshteinDistance { /// /// 取最小的一位数 /// /// /// /// /// private int LowerOfThree(int first, int second, int third) { int min = Math.Min(first, second); return Math.Min(min, third); } private int Levenshtein_Distance(string str1, string str2) { int[,] Matrix; int n = str1.Length; int m = str2.Length;   int temp = 0; char ch1; char ch2; int i = 0; int j = 0; if (n == 0) { return m; } if (m == 0) {   return n; } Matrix = new int[n + 1, m + 1];   for (i = 0; i <= n; i++) { //初始化第一列 Matrix[i, 0] = i; }   for (j = 0; j <= m; j++) { //初始化第一行 Matrix[0, j] = j; }   for (i = 1; i <= n; i++) { ch1 = str1[i - 1]; for (j = 1; j <= m; j++) { ch2 = str2[j - 1]; if (ch1.Equals(ch2)) { temp = 0; } else { temp = 1; } Matrix[i, j] = LowerOfThree(Matrix[i - 1, j] + 1, Matrix[i, j - 1] + 1, Matrix[i - 1, j - 1] + temp); } } for (i = 0; i <= n; i++) { for (j = 0; j <= m; j++) { Console.Write(" {0} ", Matrix[i, j]); } Console.WriteLine(""); }   return Matrix[n, m]; } /// /// 计算字符串相似度 /// /// /// /// public decimal LevenshteinDistancePercent(string str1, string str2) { //int maxLenth = str1.Length > str2.Length ? str1.Length : str2.Length; int val = Levenshtein_Distance(str1, str2);return 1 - (decimal)val / Math.Max(str1.Length, str2.Length); } } } } //csharp/7288