[Python] Python 最近最少使用算法 →→→→→进入此内容的聊天室

来自 , 2019-07-27, 写在 Python, 查看 105 次.
URL http://www.code666.cn/view/7ffb4e0e
  1. # lrucache.py -- a simple LRU (Least-Recently-Used) cache class
  2.  
  3. # Copyright 2004 Evan Prodromou <evan@bad.dynu.ca>
  4. # Licensed under the Academic Free License 2.1
  5.  
  6. # Licensed for ftputil under the revised BSD license
  7. # with permission by the author, Evan Prodromou. Many
  8. # thanks, Evan! :-)
  9. #
  10. # The original file is available at
  11. # http://pypi.python.org/pypi/lrucache/0.2 .
  12.  
  13. # arch-tag: LRU cache main module
  14.  
  15. """a simple LRU (Least-Recently-Used) cache module
  16.  
  17. This module provides very simple LRU (Least-Recently-Used) cache
  18. functionality.
  19.  
  20. An *in-memory cache* is useful for storing the results of an
  21. 'expe\nsive' process (one that takes a lot of time or resources) for
  22. later re-use. Typical examples are accessing data from the filesystem,
  23. a database, or a network location. If you know you'll need to re-read
  24. the data again, it can help to keep it in a cache.
  25.  
  26. You *can* use a Python dictionary as a cache for some purposes.
  27. However, if the results you're caching are large, or you have a lot of
  28. possible results, this can be impractical memory-wise.
  29.  
  30. An *LRU cache*, on the other hand, only keeps _some_ of the results in
  31. memory, which keeps you from overusing resources. The cache is bounded
  32. by a maximum size; if you try to add more values to the cache, it will
  33. automatically discard the values that you haven't read or written to
  34. in the longest time. In other words, the least-recently-used items are
  35. discarded. [1]_
  36.  
  37. .. [1]: 'Discarded' here means 'removed from the cache'.
  38.  
  39. """
  40.  
  41. from __future__ import generators
  42. import time
  43. from heapq import heappush, heappop, heapify
  44.  
  45. # the suffix after the hyphen denotes modifications by the
  46. #  ftputil project with respect to the original version
  47. __version__ = "0.2-1"
  48. __all__ = ['CacheKeyError', 'LRUCache', 'DEFAULT_SIZE']
  49. __docformat__ = 'reStructuredText en'
  50.  
  51. DEFAULT_SIZE = 16
  52. """Default size of a new LRUCache object, if no 'size' argument is given."""
  53.  
  54. class CacheKeyError(KeyError):
  55.     """Error raised when cache requests fail
  56.  
  57.    When a cache record is accessed which no longer exists (or never did),
  58.    this error is raised. To avoid it, you may want to check for the existence
  59.    of a cache record before reading or deleting it."""
  60.     pass
  61.  
  62. class LRUCache(object):
  63.     """Least-Recently-Used (LRU) cache.
  64.  
  65.    Instances of this class provide a least-recently-used (LRU) cache. They
  66.    emulate a Python mapping type. You can use an LRU cache more or less like
  67.    a Python dictionary, with the exception that objects you put into the
  68.    cache may be discarded before you take them out.
  69.  
  70.    Some example usage::
  71.  
  72.    cache = LRUCache(32) # new cache
  73.    cache['foo'] = get_file_contents('foo') # or whatever
  74.  
  75.    if 'foo' in cache: # if it's still in cache...
  76.        # use cached version
  77.        contents = cache['foo']
  78.    else:
  79.        # recalculate
  80.        contents = get_file_contents('foo')
  81.        # store in cache for next time
  82.        cache['foo'] = contents
  83.  
  84.    print cache.size # Maximum size
  85.  
  86.    print len(cache) # 0 <= len(cache) <= cache.size
  87.  
  88.    cache.size = 10 # Auto-shrink on size assignment
  89.  
  90.    for i in range(50): # note: larger than cache size
  91.        cache[i] = i
  92.  
  93.    if 0 not in cache: print 'Zero was discarded.'
  94.  
  95.    if 42 in cache:
  96.        del cache[42] # Manual deletion
  97.  
  98.    for j in cache:   # iterate (in LRU order)
  99.        print j, cache[j] # iterator produces keys, not values
  100.    """
  101.  
  102.     class __Node(object):
  103.         """Record of a cached value. Not for public consumption."""
  104.  
  105.         def __init__(self, key, obj, timestamp, sort_key):
  106.             object.__init__(self)
  107.             self.key = key
  108.             self.obj = obj
  109.             self.atime = timestamp
  110.             self.mtime = self.atime
  111.             self._sort_key = sort_key
  112.  
  113.         def __cmp__(self, other):
  114.             return cmp(self._sort_key, other._sort_key)
  115.  
  116.         def __repr__(self):
  117.             return "<%s %s => %s (%s)>" % \
  118.                    (self.__class__, self.key, self.obj, \
  119.                     time.asctime(time.localtime(self.atime)))
  120.  
  121.     def __init__(self, size=DEFAULT_SIZE):
  122.         # Check arguments
  123.         if size <= 0:
  124.             raise ValueError, size
  125.         elif type(size) is not type(0):
  126.             raise TypeError, size
  127.         object.__init__(self)
  128.         self.__heap = []
  129.         self.__dict = {}
  130.         """Maximum size of the cache.
  131.        If more than 'size' elements are added to the cache,
  132.        the least-recently-used ones will be discarded."""
  133.         self.size = size
  134.         self.__counter = 0
  135.  
  136.     def _sort_key(self):
  137.         """Return a new integer value upon every call.
  138.        
  139.        Cache nodes need a monotonically increasing time indicator.
  140.        time.time() and time.clock() don't guarantee this in a
  141.        platform-independent way.
  142.        """
  143.         self.__counter += 1
  144.         return self.__counter
  145.  
  146.     def __len__(self):
  147.         return len(self.__heap)
  148.  
  149.     def __contains__(self, key):
  150.         return self.__dict.has_key(key)
  151.  
  152.     def __setitem__(self, key, obj):
  153.         if self.__dict.has_key(key):
  154.             node = self.__dict[key]
  155.             # update node object in-place
  156.             node.obj = obj
  157.             node.atime = time.time()
  158.             node.mtime = node.atime
  159.             node._sort_key = self._sort_key()
  160.             heapify(self.__heap)
  161.         else:
  162.             # size may have been reset, so we loop
  163.             while len(self.__heap) >= self.size:
  164.                 lru = heappop(self.__heap)
  165.                 del self.__dict[lru.key]
  166.             node = self.__Node(key, obj, time.time(), self._sort_key())
  167.             self.__dict[key] = node
  168.             heappush(self.__heap, node)
  169.  
  170.     def __getitem__(self, key):
  171.         if not self.__dict.has_key(key):
  172.             raise CacheKeyError(key)
  173.         else:
  174.             node = self.__dict[key]
  175.             # update node object in-place
  176.             node.atime = time.time()
  177.             node._sort_key = self._sort_key()
  178.             heapify(self.__heap)
  179.             return node.obj
  180.  
  181.     def __delitem__(self, key):
  182.         if not self.__dict.has_key(key):
  183.             raise CacheKeyError(key)
  184.         else:
  185.             node = self.__dict[key]
  186.             del self.__dict[key]
  187.             self.__heap.remove(node)
  188.             heapify(self.__heap)
  189.             return node.obj
  190.  
  191.     def __iter__(self):
  192.         copy = self.__heap[:]
  193.         while len(copy) > 0:
  194.             node = heappop(copy)
  195.             yield node.key
  196.         raise StopIteration
  197.  
  198.     def __setattr__(self, name, value):
  199.         object.__setattr__(self, name, value)
  200.         # automagically shrink heap on resize
  201.         if name == 'size':
  202.             while len(self.__heap) > value:
  203.                 lru = heappop(self.__heap)
  204.                 del self.__dict[lru.key]
  205.  
  206.     def __repr__(self):
  207.         return "<%s (%d elements)>" % (str(self.__class__), len(self.__heap))
  208.  
  209.     def mtime(self, key):
  210.         """Return the last modification time for the cache record with key.
  211.        May be useful for cache instances where the stored values can get
  212.        'stale', such as caching file or network resource contents."""
  213.         if not self.__dict.has_key(key):
  214.             raise CacheKeyError(key)
  215.         else:
  216.             node = self.__dict[key]
  217.             return node.mtime
  218.  
  219. if __name__ == "__main__":
  220.     cache = LRUCache(25)
  221.     print cache
  222.     for i in range(50):
  223.         cache[i] = str(i)
  224.     print cache
  225.     if 46 in cache:
  226.         print "46 in cache"
  227.         del cache[46]
  228.     print cache
  229.     cache.size = 10
  230.     print cache
  231.     cache[46] = '46'
  232.     print cache
  233.     print len(cache)
  234.     for c in cache:
  235.         print c
  236.     print cache
  237.     print cache.mtime(46)
  238.     for c in cache:
  239.         print c
  240.  
  241. #//python/1191

回复 "Python 最近最少使用算法"

这儿你可以回复上面这条便签

captcha